Featured Post

What to Know About COVID Pneumonia

Image
tb gold test :: Article Creator Scientists Develop A TB Test & Find A Genetic Vulnerability In Resistant Strains A rapid diagnostic test for tuberculosis (TB) has been approved for the first time by the World Health Organization (WHO). The assay can identify the tuberculosis-causing pathogen Mycobacterium tuberculosis in sputum samples within a few hours. Tuberculosis is a primary cause of death by infectious disease worldwide. The disease is estimated to kill over one million people every year, and is a huge socio-economic burden, particularly in low- and middle-income countries. "High-quality diagnostic tests are the cornerstone of effective TB care and prevention," said Dr. Rogerio Gaspar, WHO Director for Regulation and Prequalification. "Prequalification paves the way for equitable access to cutting-edge technologies, empowering countries to address the dual burden of TB and drug-resistant TB."  M. Tuberculosis c...

Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China - BMC Infectious Diseases - BMC Infectious Diseases

  • World Health Organization (WHO). Global Tuberculosis Report, 2019. https://www.who.int/tb/publications/global_report/en/. Accessed Mar 2021.

  • Banuls AL, Sanou A, Van Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol. 2015;64(11):1261–9.

    CAS  Article  Google Scholar 

  • Dye C, Hosseini M, Watt C. Did we reach the 2005 targets for tuberculosis control? Bull World Health Organ. 2007;85(5):364–9.

    Article  Google Scholar 

  • Glaziou P, Floyd K, Korenromp EL, Sismanidis C, Bierrenbach AL, Williams BG, et al. Lives saved by tuberculosis control and prospects for achieving the 2015 global target for reducing tuberculosis mortality. Bull World Health Organ. 2011;89(8):573–82.

    Article  Google Scholar 

  • Mandal S, Chadha VK, Laxminarayan R, Arinaminpathy N. Counting the lives saved by DOTS in India: a model-based approach. BMC Med. 2017;15(1):47.

    Article  Google Scholar 

  • Rangaka MX, Cavalcante SC, Marais BJ, Thim S, Martinson NA, Swaminathan S, et al. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet. 2015;386(10010):2344–53.

    Article  Google Scholar 

  • World Health Organization (WHO). Geneva: World Health Organization, 2012. https://www.ncbi.nlm.nih.gov/pubmed/24404639. Accessed Mar 2021.

  • Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, et al. WHO's new End TB Strategy. Lancet. 2015;385(9979):1799–801.

    Article  Google Scholar 

  • Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother. 2018;14(7):1697–716.

    Article  Google Scholar 

  • Lin HH, Wang L, Zhang H, Ruan Y, Chin DP, Dye C. Tuberculosis control in China: use of modelling to develop targets and policies. Bull World Health Organ. 2015;93(11):790–8.

    Article  Google Scholar 

  • Houben RMGJ, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Global Health. 2016;4(11):e806–15.

    Article  Google Scholar 

  • Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med. 2015;13:88.

    Article  Google Scholar 

  • Xu K, Ding C, Mangan CJ, Li Y, Ren J, Yang S, et al. Tuberculosis in China: a longitudinal predictive model of the general population and recommendations for achieving WHO goals. Respirology. 2017;22(7):1423–9.

    Article  Google Scholar 

  • Menzies NA, Cohen T, Hill AN, Yaesoubi R, Galer K, Wolf E, et al. Prospects for tuberculosis elimination in the United States: results of a transmission dynamic model. Am J Epidemiol. 2018;187(9):2011–20.

    Article  Google Scholar 

  • Dockrell HM, Smith SG. What have we learnt about BCG vaccination in the Last 20 years? Front Immunol. 2017;8:1134.

    Article  Google Scholar 

  • Floyd K, Glaziou P, Zumla A, Raviglione M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era. Lancet Respir Med. 2018;6(4):299–314.

    Article  Google Scholar 

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

    CAS  Article  Google Scholar 

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.

    CAS  Article  Google Scholar 

  • World Health Organization (WHO). WHO Coronavirus Disease (COVID-19), 2020. https://covid19.who.int/. Accessed Mar 2021.

  • Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12(3):165–74.

    Article  Google Scholar 

  • The National Statutory Infectious Disease Report Statistics Table. The National Statutory Infectious Disease Report Statistics Table, 2020. http://www.nhc.gov.cn/jkj/pqt/new_list.shtml. Accessed Jan 2022.

  • The National Bureau of Statistics. The total population data, 2020. http://data.stats.gov.cn/easyquery.htm?cn=C01. Accessed Jan 2022.

  • Kam HJ, Sung JO, Park RW. Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthc Inform Res. 2010;16(3):158–65.

    Article  Google Scholar 

  • Helfenstein U. Box-Jenkins modelling in medical research. Stat Methods Med Res. 1996;5(1):3–22.

    CAS  Article  Google Scholar 

  • Ginestet C. Model Selection and Model Averaging. J R Stat Soc Ser A. 2010;172:937–937.

    Article  Google Scholar 

  • Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011;11:218.

    Article  Google Scholar 

  • Wang T, Liu J, Zhou Y, Cui F, Huang Z, Wang L, et al. Prevalence of hemorrhagic fever with renal syndrome in Yiyuan County, China, 2005–2014. BMC Infect Dis. 2016;16:69.

    Article  Google Scholar 

  • Zhou L, Zhao P, Wu D, Cheng C, Huang H. Time series model for forecasting the number of new admission inpatients. BMC Med Inform Decis Mak. 2018;18(1):39.

    Article  Google Scholar 

  • Zhao C, Yang Y, Wu S, Wu W, Xue H, An K, et al. Search trends and prediction of human brucellosis using Baidu index data from 2011 to 2018 in China. Sci Rep. 2020;10(1):5896.

    CAS  Article  Google Scholar 

  • Liu Q, Li Z, Ji Y, Martinez L, Zia UH, Javaid A, et al. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist. 2019;12:2311–22.

    Article  Google Scholar 

  • Box GEP, Tiao GC. Intervention analysis with applications to economic and environmental problems. J Am Stat Assoc. 1975;70(349):70–9.

    Article  Google Scholar 

  • World Health Organization (WHO). Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, 2020. https://apps.who.int/iris/handle/10665/333114. Accessed Mar 2021.

  • Ye Q, Wang B, Mao J, Fu J, Shang S, Shu Q, et al. Epidemiological analysis of COVID-19 and practical experience from China. J Med Virol. 2020;92(7):755–69.

    CAS  Article  Google Scholar 

  • Lönnroth K, Corbett E, Golub J, Godfrey-Faussett P, Uplekar M, Weil D, et al. Systematic screening for active tuberculosis: rationale, definitions and key considerations. Int J Tuberc Lung Dis. 2013;17(3):289–98.

    Article  Google Scholar 

  • Yang Q, Wang J, Ma H, Wang X. Research on COVID-19 based on ARIMA model(Delta)-Taking Hubei, China as an example to see the epidemic in Italy. J Infect Public Health. 2020;13(10):1415–8.

    Article  Google Scholar 

  • Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS ONE. 2018;13(9): e0201987.

    Article  Google Scholar 

  • Cilloni L, Fu H, Vesga JF, Dowdy D, Pretorius C, Ahmedov S, et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine. 2020;28: 100603.

    Article  Google Scholar 

  • Bardhan M, Hasan MM, Ray I, Sarkar A, Chahal P, Rackimuthu S, et al. Tuberculosis amidst COVID-19 pandemic in India: unspoken challenges and the way forward. Trop Med Health. 2021;49(1):84.

    Article  Google Scholar 

  • Zong Z, Huo F, Shi J, Jing W, Ma Y, Liang Q, et al. Relapse versus reinfection of recurrent tuberculosis patients in a national tuberculosis specialized hospital in Beijing, China. Front Microbiol. 2018;9:1858.

    Article  Google Scholar 

  • Shen G, Xue Z, Shen X, Sun B, Gui X, Shen M, et al. The study recurrent tuberculosis and exogenous reinfection, Shanghai, China. Emerg Infect Dis. 2006;12(11):1776–8.

    Article  Google Scholar 

  • Comments

    Popular Posts

    Preventing, controlling spread of animal diseases focus of forum at Penn State - Pennsylvania State University

    Model Monday's: Diana Moldovan

    “Live Coronavirus Map Used to Spread Malware - Krebs on Security” plus 1 more